Tengo que reconocer que con el advenimiento de chatGPT y las muestras de la IA generativa en campos como la programación de un tiempo a esta parte las expectativas se han disparado con respecto a lo que se puede esperar de una Inteligencia Artificial. Sin embargo, no es oro todo lo que reluce.
La disciplina de Inteligencia Artificial existe desde hace muchísimos años, yo mismo, como estudiante de mi facultad fui miembro del Laboratorio de Inteligencia Artificial desde el año 1989 hasta que salí del mismo (esa es una historia para contar en otro momento) y me dediqué a otros proyectos de IA como la traducción automática. Pero la IA es anterior a estas fechas incluso. La verdad es que el avance «real» de la IA no ha sido expectacular estos años pasados excepto en la imaginación de algunos autores de ciencia ficción.
¿Porqué, entonces, se ha notado un avance tan importante estos últimos años? Bueno, lo que yo os puedo decir es que no toda la IA ha avanzado por igual, la que ahora mismo disfutamos es la IA generativa basada en aprendizaje profundo «Deep Learning». Para que se entienda, se trata de un sistema que «aprende» en base a miles de millones de muestras a generar «algo», una imagen, un texto, una respuesta ante una entrada determinada. Y el problema está en que al utilizar esa IA simplemente estamos recombinando los elementos de su entrenamiento de manera que sea más o menos adecuado a la pregunta o solicitud de entrada, no hay lógica, no hay algoritmo, es simple aprendizaje.
Si tu le preguntas algo a chatGPT no se desencadenan procedimientos lógicos que luego se puedan auditar, lo que se produce es una generación de lo que más probablemente, según los documentos que ya aprendió, se parezca a una respuesta a esa pregunta. Lo más parecido a un papagayo al que se le han enseñado miles de frases, te dará una respuesta tenga ésta sentido o no lo tenga.
De hecho, uno de los efectos más curiosos de las IAs generativas es que se inventan cosas – «alucinaciones» -, y no hay forma de que sepan si es cierto o no lo que están contando, por lo que es complicado, por no decir imposible, fiarse al 100% de lo que podamos obtener de una IA de este estilo. A diferencia de las imágenes que ilustran esta entrada, que han sido generadas por IA y podemos verlas como una simple muestra más o menos estética, si hacemos caso de lo que nos recomienda chatGPT, Gemini o cualquier otra AI generativa estaremos haciendo caso a un papagayo con mucho entrenamiento.
Este resurgir de la IA ha sido, básicamente, consecuencia de la acumulación de cientos de miles de millones de datos proporcionados por los usuarios de internet, unos conscientemente y otros inconscientemente en pago por el uso de alguna red social o alguna herramienta «gratuita». De hecho, la disponibilidad de estos conjuntos de entrenamiento tan inmensamente grande es lo único que ha permitido la ilusión de disponer de un asistente inteligente de verdad y, repito, es una ilusión. Nunca te fíes de quien no puede explicarte porqué ha hecho o dicho algo… Y las IAs generativas no pueden.
¿Hay que descartar entonces el uso de estas IAs? No, en ningún caso, disponer de una herramienta entrenada con datos que nos son útiles (como todos los códigos de github que su copilot ha usado en su entrenamiento) nos pueden ahorrar mucho tiempo en disponer de versiones preliminares o códigos sin refinar. Pero siempre necesitaremos alguien para refinar los resultados de cualquier IA generativa. Simplemente porque la IA no sabe realmente qué es lo que está diciendo (y nunca lo sabrá). El hecho de que haya gente planeándose reemplazar personas humanas por IAs (o incluyo que ya lo han hecho) demuestra que hay trabajos de bajo valor añadido que no necesitan siquiera razonar correctamente para ser desempeñados, esos trabajos si que pueden ser reemplazados, pero igual es que la necesidad de éstos ya era algo anecdótico.