Como ya vimos en la anterior entrada sobre agentes de IA opensource, hay vida más allá de claude code y gemini-cli (ya veremos cuando tengamos tiempo otros como kilo code) y se nos quedó pendiente instalar y probar otro agente muy conocido opencode.
Vamos a hacer aquí un resumen de la instalación, configuración con un modelo LLM que tengamos y hasta el uso de un MCP local, al igual que hicimos con goose. Luego veremos si son comparables y si lo son a sus homólogos «comerciales»

Instalación
La instalación de opencode es de todo menos dificil, solo tienes que entrar a la página https://opencode.ai/download y ahí tienes todas las opciones disponibles, de hecho, lo más sencillo es ejecutar este script que te indican en la página principal:
curl -fsSL https://opencode.ai/install | bash
Por defecto te va a instalar solo la versión de terminal, pero os recomiendo que vayáis a la página de descargas y os instaléis la versión de escritorio también, que no es que tenga muchas ventajas, pero ya que goose lo usamos en su versión de escritorio así podemos comparar un poco mejor (goose también tiene versión de terminal, pero no la he usado demasiado).

Configuración
Lo primero que tenemos que hacer justo después de arrancar opencode es conmfigurar nuestro LLM (debemos tener alguno disponible, ya sea local o remoto, esto es solo un agente).
Por suerte opencode es bastante amable a la hora de configurar un proveedor, solo tenemos que darle al icono + que vemos a la izquierda y se nos presentará la lista de proveedores soportados:

Y tiene un montón, nosotros, como ya hicimos en el post anterior vamos a conectarnos con glm-4.7 (si, ya han sacado nuevo modelo) y lo haremos usando Z.AI codign plan (podemos usar el que nosotros tengamos, aunque sea solo la capa gratuita)

Y luego cuando abramos un proyecto (un directorio) ya se nos permitirá elegir el modelo:

O, si estamos en el terminal, con la opción /model que nos permitirá elegir de los configurados:

Si os fijáis en la última imagen yo tengo ya configurados dos servidores MCP, vamos a ver cómo lo he hecho (tampoco es tan complicado, pero es más difícil que lo de escoger modelo).
En nuestro caso vamos a tener que editar un archivo, que está en /.config/opencode/opencode.jsonc, al que tendremos que adaptar el código que ya pusimos en el post anterior:
{
"$schema": "https://opencode.ai/config.json",
"mcp": {
"outline": {
"type": "local",
"command": ["docker",
"run",
"-i",
"--rm",
"--init",
"-e",
"DOCKER_CONTAINER=true",
"-e",
"OUTLINE_API_KEY",
"-e",
"OUTLINE_API_URL",
"biblioeteca/mcp-outline"
],
"environment": {
"OUTLINE_API_KEY": "ol_api_...",
"OUTLINE_API_URL": "https://mi-servidor-/api"
},
"enabled": true
},
}
}
Como véis es muy parecido a lo que poníamos anteriormente, solo aseguraos de que el entorno sea el correcto y luego ya podéis activar los MCP para cualquier proyecto o de manera general.
Para activarlos simplemente pinchar (en la versión de escritorio) en MCP en la parte superior derecha y os aparecerá un desplegable para activar o no los MCP que tengáis configurados:

Y, bueno, con esto ya tenemos otro agente listo para usarse, lo podemos usar en dos modos, modo Plan para que no haga ningún cambio y solo planifique lo que hay que hacer o en modo Build para que haga todos los cambios necesarios.
Me queda mucho por explorar todavía con este agente (y sus plugins, que hay alguno sabroso) pero todavía tengo que ver cómo engancharlo con un ollama local para no tener que usar modelos externos… Eso lo dejo para la próxima.













