IA con OpenCode

Como ya vimos en la anterior entrada sobre agentes de IA opensource, hay vida más allá de claude code y gemini-cli (ya veremos cuando tengamos tiempo otros como kilo code) y se nos quedó pendiente instalar y probar otro agente muy conocido opencode.

Vamos a hacer aquí un resumen de la instalación, configuración con un modelo LLM que tengamos y hasta el uso de un MCP local, al igual que hicimos con goose. Luego veremos si son comparables y si lo son a sus homólogos «comerciales»

Instalación

La instalación de opencode es de todo menos dificil, solo tienes que entrar a la página https://opencode.ai/download y ahí tienes todas las opciones disponibles, de hecho, lo más sencillo es ejecutar este script que te indican en la página principal:

curl -fsSL https://opencode.ai/install | bash

Por defecto te va a instalar solo la versión de terminal, pero os recomiendo que vayáis a la página de descargas y os instaléis la versión de escritorio también, que no es que tenga muchas ventajas, pero ya que goose lo usamos en su versión de escritorio así podemos comparar un poco mejor (goose también tiene versión de terminal, pero no la he usado demasiado).

Configuración

Lo primero que tenemos que hacer justo después de arrancar opencode es conmfigurar nuestro LLM (debemos tener alguno disponible, ya sea local o remoto, esto es solo un agente).

Por suerte opencode es bastante amable a la hora de configurar un proveedor, solo tenemos que darle al icono + que vemos a la izquierda y se nos presentará la lista de proveedores soportados:

Y tiene un montón, nosotros, como ya hicimos en el post anterior vamos a conectarnos con glm-4.7 (si, ya han sacado nuevo modelo) y lo haremos usando Z.AI codign plan (podemos usar el que nosotros tengamos, aunque sea solo la capa gratuita)

Y luego cuando abramos un proyecto (un directorio) ya se nos permitirá elegir el modelo:

O, si estamos en el terminal, con la opción /model que nos permitirá elegir de los configurados:

Si os fijáis en la última imagen yo tengo ya configurados dos servidores MCP, vamos a ver cómo lo he hecho (tampoco es tan complicado, pero es más difícil que lo de escoger modelo).

En nuestro caso vamos a tener que editar un archivo, que está en /.config/opencode/opencode.jsonc, al que tendremos que adaptar el código que ya pusimos en el post anterior:

{
  "$schema": "https://opencode.ai/config.json",
  "mcp": {
    "outline": {
	"type": "local",
	"command": ["docker",
		"run",
		"-i",
		"--rm",
		"--init",
		"-e",
		"DOCKER_CONTAINER=true",
		"-e",
		"OUTLINE_API_KEY",
		"-e",
		"OUTLINE_API_URL",
		"biblioeteca/mcp-outline"
	],
	"environment": {
		"OUTLINE_API_KEY": "ol_api_...",
		"OUTLINE_API_URL": "https://mi-servidor-/api"
	},
	"enabled": true
    },
  }
}

Como véis es muy parecido a lo que poníamos anteriormente, solo aseguraos de que el entorno sea el correcto y luego ya podéis activar los MCP para cualquier proyecto o de manera general.

Para activarlos simplemente pinchar (en la versión de escritorio) en MCP en la parte superior derecha y os aparecerá un desplegable para activar o no los MCP que tengáis configurados:

Y, bueno, con esto ya tenemos otro agente listo para usarse, lo podemos usar en dos modos, modo Plan para que no haga ningún cambio y solo planifique lo que hay que hacer o en modo Build para que haga todos los cambios necesarios.

Me queda mucho por explorar todavía con este agente (y sus plugins, que hay alguno sabroso) pero todavía tengo que ver cómo engancharlo con un ollama local para no tener que usar modelos externos… Eso lo dejo para la próxima.

Agentes de código abierto

Como hemos visto en anteriores entregas, podemos utilizar distintos modelos de IA en distintos agentes. Vimos como usar glm con claude-code, hemos visto como utilizar mcps también en claude-code o en github copilot pero lo ideal sería no depender de un agente comercial, entendiendo como tal alguno que va ligado a algún modelo o ide. Por eso me he puesto a buscar y he encontrado un par de ellos. En esta entrada vamos a intentar configurarlos para que funcionen con los modelos de IA a los que tenemos acceso e incluso añadirles acceso a mcps.

goose

El primero que encontré y que me parece perfecto en muchos aspectos se llama goose, podéis encontrarlo en https://github.com/block/goose

Instalación

nada más sencillo que seguir las instrucciones de https://block.github.io/goose/docs/getting-started/installation/ en mi caso y como uso ubuntu solo tuve que ejecutar:

wget https://github.com/block/goose/releases/download/v1.16.1/goose_1.16.1_amd64.deb
sudo dpkg -i goose_1.16.1_amd64.deb

Os recomiendo que os paseis a ver si hay una versión más nueva a esta que he usado yo.

Si todo ha ido bien solo tienes que buscar goose en el menú y ejecutarlo (o goose desde la terminal)

Configurar el LLM

Vamos a usar como ejemplo lo que vimos en la entrada sobre LLM baratos, el glm-4.6. Para ello pulsaremos en el icono de abajo con forma de robot y seleccionaremos «Change Model»

Eso permitirá acceder a un desplegable con los modelos disponibles. Como inicialmente no tendrás ninguno habrá que seleccionar la opción «Use other provider» que nos sacará una pantalla como esta:

Tal como hicimos con claude vamos a usar una configuración personalizada de anthropic. Pinchamos en configure y le ponemos la url y la api key que pusimos la otra vez:

Y eso es todo, luego cuando queramos seleccionar el modelo ya nos aparecerá la opción anthropic y podremos seleccionarla

Ahora ya podemos preguntarle lo que queramos a nuestro agente que contará con el modelo integrado.

Modos de funcionamiento

Si os fijáis en la parte de abajo a la derecha veréis que hay un marcador que indica el modo en el que está tabajando el agente, en mi caso lo tengo en «Autonomous» que es como darle carta blanca para que haga lo que hay que hacer, pero también tiene otros modos:

Y para cada uno de los modos puedes configurar los permisos para cada una de las extensiones.

Extensiones

Como ya dijimos al principio vamos a darle herramientas a nuestro nuevo agente, en este caso el mismo mcp que usamos en esta otra entrada, para ello nada más sencillo que ir a la opción Extensión en el menú principal que nos llevará a una ventana como esta:

Creamos una extensión nueva y le ponemos los datos tal que así (solo hay que poner en el comando lo que antes poníamos como un array json y rellenar las variables de entorno):

Y luego la activamos (aparecerá arriba). Con eso ya podemos volver a usar la herramienta nueva desde goose preguntando cosas como:

¿puedes recuperar un documento de outline llamado API docufactu y hacerme un resumen?

A este agente se le pueden añadir modelos locales como por ejemplo modelos de ollama que tengas corriendo en tu ordenador además de los más populares. También puede usar directamente github copilot sin entrar al VScode.

Si queréis instalar la versión para terminal también se puede, el único problema es que el ejecutable se llama exactamente igual (goose) que el que hemos usado para lanzar la UI (se guarda en otro directorio) por lo que tendréis goose UI si lo seleccionas por el menu y goose linea de comando si lo ejecutas desde una terminal (también depende del orden que tengas en tu path).

Lo siguiente que quería hacer es instalar opencode, pero creo que lo voy a dejar para una siguiente entrada. Disfrutad de goose lo que podáis.