Conectar claude code con MCPs

Como ya contamos en una entrada anterior La IA más barata para generar código, podemos utilizar claude code con otras IAs además de las de Anthropic, y esto es muy bueno porque nos da muchas herramientas de agente inteligente como la nada despreciable posibilidad de conectar con servidores MCP.

Para este ejemplo vamos a utilizar outline, que, para el que no lo conozca, es un excelente editor de documentos al estilo notion y que yo uso, junto con mi equipo, para dejar la documentación de los proyectos y ahora vamos a ver cómo podemos integrar esta documentación con nuestra IA favorita para programar.

Lo primero que tenemos que hacer es conseguir una clave de API en outline. Eso se consigue en la ruta /settings/api-and-apps donde pediremos crear una nueva clave api

Una vez creada más vale que os la copieis rápido porque no vais a poder volver a recuperarla después.

Una vez que tenemos instalado claude code y sus prerequisitos (que podéis ver en la entrada anterior) tendremos en nuestra raíz de usuario un archivo llamado .claude.json que tiene, entre otras cosas, las definiciones de los mcp.

El fragmento que tenemos que añadir es:

       "mcpServers": {
        "outline": {
          "type": "stdio",
          "command": "docker",
          "args": [
            "run",
            "-i",
            "--rm",
            "--init",
            "-e",
            "DOCKER_CONTAINER=true",
            "-e",
            "OUTLINE_API_KEY",
            "-e",
            "OUTLINE_API_URL",
            "biblioeteca/mcp-outline"
          ],
          "env": {
            "OUTLINE_API_KEY": "ol_api_.....",
            "OUTLINE_API_URL": "https://<servidor>/api"
          }
        },

Yo lo he añadido bajo la línea «mcpContextUris»: [] dentro de uno de los proyectos donde lo quiero usar. Evidentemente para usar este mcp necesitas tener docker instalado (doy por hecho que si estás aquí eres de los míos y lo usas diariamente).

Una vez que has grabado el archivo y arrancas claude en el directorio del proyecto en cuestión le puedes preguntar por la lista de mcps:

$ claude mcp list
Checking MCP server health...

outline: docker run -i --rm --init -e DOCKER_CONTAINER=true -e OUTLINE_API_KEY -e OUTLINE_API_URL biblioeteca/mcp-outline - ? Connected

Y ya puedes hacer que la magia surja…

Y darle que si a todos los permisos que pida

Y ya podrías pedirle que te lea documentos como requisitos para programar o que, como en este caso, que nos documente el api que acabamos de construir en el proyecto

¿puedes crear un documento llamado API DocuFactu en esa colección con la documentación sobre el API (solo la parte verifactu) que incluya ejemplos de uso usando una APIKEY? 

Y este es el resultado… (solo parte)

Como todo lo que hace la IA luego alguien que sepa tiene que retocarlo y corregirlo (aquí también se puede inventar cosas), pero el caso es que ya tenemos mucho trabajo adelantado.

Hay miles de mcp con los que podemos interactuar por ahí… Solo tienes que buscarlo o, sino, construir el tuyo propio que, igual, lo hacemos aquí cuando tengamos un rato.

La IA más barata para generar código

Llevo desde casi el principio de toda esta vorágine utilizando github copilot, inicialmente con el modelo único que nos proporcionaba y recientemente en modo agente con claude sonnet y es lo mejor que he probado hasta el momento. Pero los 10 euros del copilot llegan hasta donde llegan y cuando se agota el crédito que tienes para usar claude con copilot te quedas un poco huerfano y es como si tu asistente se hubiese ido de vacaciones… Entonces me puse a buscar lo que costaría tener acceso extra a claude para cuando esto pasaba… Y resulta que son 20 eurazos al mes en su plan básico.

No parece mucho, pero si ya pagas copilot y no quieres pagar un extra tan alto solo para los días que se acaban los créditos de claude, pues se hace un poco cuesta arriba. Así que me puse a buscar qué otras opciones teníamos que fuesen, digamos, un poco más económicas y tuviesen un resultado similar al que te da claude. Y resulta que me topé con glm

Por 3 dolares al mes (contraté el trimestral para probar) dicen que tienen un modelo similar en potencia a claude sonnet 4. Lo que vamos a ver aquí es como utilizar este modelo con el agente claude code que tiene un comportamiento similar a github copilot y que permite, entre otras cosas, interactuar con MCPs. No es un proceso tan complicado, así que os dejo aquí cómo hacerlo:

Lo primero que vamos a necesitar es la clave API de GLM, para eso (suponiendo que os habéis suscrito, que si no nada de esto sirve), os vais a la sección de API keys

Y ahí creais una nueva API KEY. No os preocupeis que podréis copiarla después de haberla creado, no es como en otros sitios que solo te la muestran una vez. Guardad esa API key que la vais a necesitar después. Por cierto, tienen muy buena documentación sobre todo esto en su página web: https://docs.z.ai/guides/overview/quick-start

Lo siguiente que tienes que hacer es instalar claude code, esto suele ser bastante sencillo y bastaría con ejecutar esto (suponiendo que tienes una versión de node >= 18 en tu ordenador):

npm install -g @anthropic-ai/claude-code

Una vez instalado ejecutalo para que se creen los archivos de configuración (y eliges ya de paso el tema)

Luego, como no vamos a usar la cuenta de anthropic, simplemente damos ctrl-c varias veces para salir. Pero con ello ya se nos han creado los directorios de configuración y podemos editarlos.

Pon lo siguiente en el archivo ~/.claude/settings.json

{
    "env": {
        "ANTHROPIC_AUTH_TOKEN": "el api key de glm",
        "ANTHROPIC_BASE_URL": "https://api.z.ai/api/anthropic",
    	"ANTHROPIC_DEFAULT_HAIKU_MODEL": "glm-4.5-air",
        "ANTHROPIC_DEFAULT_SONNET_MODEL": "glm-4.6",
        "ANTHROPIC_DEFAULT_OPUS_MODEL": "glm-4.6"
    }
}

Luego nos vamos a cualquier directorio en el que tengamos código y querramos trabajar y ejecutamos el comando claude

Le decimos que si le damos permiso y ya podremos utilizar claude code con glm (lo podemos comprobar en la parte superior)

Y ya podemos usar el agente de claude con el modelo glm y ver qué tal se le da… En mis pruebas lo ha hecho bastante bien, aunque el interfaz es bastante más espartano que el de github copilot no le falta ninguna de las funcionalidades.

Por ahora disfrutad con esto (lo puedes lanzar desde dentro de un terminal de vscode y lo detecta y se integra con el ide) y en la siguiente entrada ya os digo como acceder a MCPs usando este agente y este modelo.