Usar una IA local con opencode

Ya vimos en el anterior post cómo instalar el agente opencode que nos va a permitir utilizar distintos proveedores de IA en nuestros flujos de trabajo (en concreto a mi para programar, pero quien sabe para qué querréis usarlos vosotros), vimos cómo configurarlo con un proveedor externo (por tanto de pago), pero nada nos impide utilizar un proveedor local (si tenéis una tarjeta con GPU solo tenéis que seguir algunos de mis posts al respecto) y ya tendréis un ollama operativo del que tirar. Así que, si cumplís los requisitos vamos a ver cómo configurar nuestra instalación de opencode para dejar de gastar dinero en proveedores externos y usar nuestra propia GPU.

No hay una forma «gráfica» de configurar el modelo, así que vamos con las instrucciones para hacerlo de manera manual:

  1. Crea el archivo opencode.jsonc (en mi caso en ~/.config/opencode ). si habéis seguido la guía de instalación previa os sonará porque es donde hemos metido la configuración mcp
  2. Mete esto (con los cambios que luego veremos):
{
  "$schema": "https://opencode.ai/config.json",
  "provider": {
    "ollama": {
      "npm": "@ai-sdk/openai-compatible",
      "options": {
        "baseURL": "http://localhost:11434/v1"
      },
      "models": {
        "qwen3:latest-16k": {
          "reasoning": true
        }
      }
    }
  }
}

En este caso hemos supuesto que tenemos el servidor ollama corriendo en nuestra propia máquina y el modelo que hemos elegido es qwen3… Pero eso tiene cierto truco, si usas el modelo tal cual te lo bajas no va a funcionar porque el contexto en ollama para este modelo es demasiado pequeño, antes tienes que hacer esto:

docker exec -it ollama bash
# ollama run qwen3:latest

>>> /set parameter num_ctx 16384
Set parameter 'num_ctx' to '16384'

>>> /save qwen3:latest-16k
Created new model 'qwen3:8b-16k'

>>> /bye

Si todo ha ido bien, cuando abras opencode en cualquier proyecto ya podrás elegir este modelo:

Y, dependiendo de los recursos de tu máquina podrás disfrutar de todas las ventajas de un modelo local. Eso si, para utilizar las capacidades de opencode aseguraos de que el modelo que estéis usando tenga capacidades para tools y thinking. Podéis verlo, por ejemplo con este modelo de nvidia (si tienes 20Gb de memoria en tu GPU es un buen candidato):

Es posible que, aunque tenga acceso a tools no nos permita ejecutar cosas tan simples como listar un directorio o editar un archivo. Eso es debido a que no está accediendo a las herramientas propias de opencode. He tenido que hacer algunos malabares para hacer funcionar algunos modelos concretos, así que dejo en vuestras manos el poder sacar lo mejor del sistema… Sin tener que pagar a otros proveedores ni enviarles información igual demasiado privada.

Como tener tu propia IA en casa

Todos hemos oído y probado las bondades de chat-gpt o usado github copilot con tremendo éxito, pero estos sistemas tienen un problema principal, que son de pago. Sus modelos son cerrados y hay que pagar una licencia para poder utilizarlos en cosas útiles. Sin embargo, existe otra manera de experimentar con la Inteligencia Artificial generativa en casa, sin pagar licencias y teniendo todo el control. Solo necesitas un equipo medianamente moderno, una GPU y una cantidad de memoria abundante (o no tanta, pero podrás jugar con menos modelos). Te cuento aquí como instalar tu propio servicio de IA en tu ordenador.

Eso si, te lo cuento solo para Linux, si tienes algún otro sistema operativo de esos de juguete tendrás que buscarte la vida (te dejo enlaces para que puedas hacerlo por tu cuenta).

Como modelo de AI vamos a utilizar llama, modelo opensource de Meta y lo vamos a instalar con ollama. Hay varias guías para instalarlo directamente en tu ordenador, pero las últimas versiones de ubuntu (yo tengo la 24.04) son ciertamente reticentes a instalar paquetes python en el sistema, por lo que la solución más sencilla será usar docker para ello. Vamos a suponer que tenemos una GPU nvidia, y la porción de docker-compose necesaria para instalarte ollama sería esta:

  ollama:
    volumes:
      - ./ollama:/root/.ollama
    container_name: ollama
    pull_policy: always
    tty: true
    ports:
      - "11434:11434"
    restart: unless-stopped
    image: ollama/ollama:${OLLAMA_DOCKER_TAG-latest}
    deploy:
      resources:
        reservations:
          devices:
            - driver: ${OLLAMA_GPU_DRIVER-nvidia}
              count: ${OLLAMA_GPU_COUNT-1}
              capabilities:
                - gpu

Con esta configuración lo que hacemos es lanzar un servidor ollama accesible desde el puerto 11434 donde podemos usar el tty o el api. No voy a entrar en muchos detalles de cómo usar ollama, pero os recomiendo que le echéis un vistazo porque es la «madre del cordero» o de la llama, en este caso.

Para que esto funcione correctamente con la gpu hay que hacer un par de cositas previamente. Os recomiendo que miréis este repositorio para ver si se ha mejorado/modificado algo: https://github.com/valiantlynx/ollama-docker pero básicamente consiste en ejecutar lo siguiente:

curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
  && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
    sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
    sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit

# Configure NVIDIA Container Toolkit
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker

Dado que vamos a necesitar un interfaz para gestionar los modelos y tener chats y demás lo siguiente que vamos a incluir en nuestro docker-compose es open-webui, modificamos nuestro docker-compose.yml para agregar lo siguiente (yo ya he contruido la imagen y la he subido a docker hub):

  open-webui:
    image: yoprogramo/open-webui:${WEBUI_DOCKER_TAG-latest}
    container_name: open-webui
    volumes:
      - ./open-webui:/app/backend/data
    depends_on:
      - ollama
    ports:
      - ${OPEN_WEBUI_PORT-3000}:8080
    environment:
      - 'OLLAMA_BASE_URL=http://ollama:11434'
      - 'WEBUI_SECRET_KEY='
    extra_hosts:
      - host.docker.internal:host-gateway
    restart: unless-stopped

Y creamos un archivo .env con el siguiente contenido:

OLLAMA_GPU_COUNT=all
SCARF_NO_ANALYTICS=true
DO_NOT_TRACK=true
ANONYMIZED_TELEMETRY=false

Y lanzar las imágenes si todo ha ido bien:

docker compose up -d

Con esto ya tendríamos corriendo nuestro servidor ollama y open-webui en nuestro propio ordenador… Simplemente tenemos que acceder con el navegador a localhost:3000

Lo primero que tenéis que hacer, una vez creado un usuario en el sistema (si, el primer usuario que se crea es administrador) es descargarse algún modelo de IA, para eso hay que entrar en la página de administración y acceder a la opción que pone «Obtener un modelo de Ollama.com», escribir el deseado y darle al botón de la derecha para descargarlo. En la imagen por ejemplo nos descargamos el modelo llama3.1 de 70B (son cerca de 42Gb, así que deberías tener espacio de sobra).

Una vez descargado ya estamos listos para usarlo, vete a la opción «nuevo Chat», selecciona el modelo en el desplegable superior y chatea con tu nueva AI…

En próximas entregas ya entraremos en más cosas que podemos hacer con nuestra IA local, seguro que no nos deja indiferentes.