Como tener tu propia IA en casa

Todos hemos oído y probado las bondades de chat-gpt o usado github copilot con tremendo éxito, pero estos sistemas tienen un problema principal, que son de pago. Sus modelos son cerrados y hay que pagar una licencia para poder utilizarlos en cosas útiles. Sin embargo, existe otra manera de experimentar con la Inteligencia Artificial generativa en casa, sin pagar licencias y teniendo todo el control. Solo necesitas un equipo medianamente moderno, una GPU y una cantidad de memoria abundante (o no tanta, pero podrás jugar con menos modelos). Te cuento aquí como instalar tu propio servicio de IA en tu ordenador.

Eso si, te lo cuento solo para Linux, si tienes algún otro sistema operativo de esos de juguete tendrás que buscarte la vida (te dejo enlaces para que puedas hacerlo por tu cuenta).

Como modelo de AI vamos a utilizar llama, modelo opensource de Meta y lo vamos a instalar con ollama. Hay varias guías para instalarlo directamente en tu ordenador, pero las últimas versiones de ubuntu (yo tengo la 24.04) son ciertamente reticentes a instalar paquetes python en el sistema, por lo que la solución más sencilla será usar docker para ello. Vamos a suponer que tenemos una GPU nvidia, y la porción de docker-compose necesaria para instalarte ollama sería esta:

  ollama:
    volumes:
      - ./ollama:/root/.ollama
    container_name: ollama
    pull_policy: always
    tty: true
    ports:
      - "11434:11434"
    restart: unless-stopped
    image: ollama/ollama:${OLLAMA_DOCKER_TAG-latest}
    deploy:
      resources:
        reservations:
          devices:
            - driver: ${OLLAMA_GPU_DRIVER-nvidia}
              count: ${OLLAMA_GPU_COUNT-1}
              capabilities:
                - gpu

Con esta configuración lo que hacemos es lanzar un servidor ollama accesible desde el puerto 11434 donde podemos usar el tty o el api. No voy a entrar en muchos detalles de cómo usar ollama, pero os recomiendo que le echéis un vistazo porque es la «madre del cordero» o de la llama, en este caso.

Para que esto funcione correctamente con la gpu hay que hacer un par de cositas previamente. Os recomiendo que miréis este repositorio para ver si se ha mejorado/modificado algo: https://github.com/valiantlynx/ollama-docker pero básicamente consiste en ejecutar lo siguiente:

curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
  && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
    sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
    sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit

# Configure NVIDIA Container Toolkit
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker

Dado que vamos a necesitar un interfaz para gestionar los modelos y tener chats y demás lo siguiente que vamos a incluir en nuestro docker-compose es open-webui, modificamos nuestro docker-compose.yml para agregar lo siguiente (yo ya he contruido la imagen y la he subido a docker hub):

  open-webui:
    image: yoprogramo/open-webui:${WEBUI_DOCKER_TAG-latest}
    container_name: open-webui
    volumes:
      - ./open-webui:/app/backend/data
    depends_on:
      - ollama
    ports:
      - ${OPEN_WEBUI_PORT-3000}:8080
    environment:
      - 'OLLAMA_BASE_URL=http://ollama:11434'
      - 'WEBUI_SECRET_KEY='
    extra_hosts:
      - host.docker.internal:host-gateway
    restart: unless-stopped

Y creamos un archivo .env con el siguiente contenido:

OLLAMA_GPU_COUNT=all
SCARF_NO_ANALYTICS=true
DO_NOT_TRACK=true
ANONYMIZED_TELEMETRY=false

Y lanzar las imágenes si todo ha ido bien:

docker compose up -d

Con esto ya tendríamos corriendo nuestro servidor ollama y open-webui en nuestro propio ordenador… Simplemente tenemos que acceder con el navegador a localhost:3000

Lo primero que tenéis que hacer, una vez creado un usuario en el sistema (si, el primer usuario que se crea es administrador) es descargarse algún modelo de IA, para eso hay que entrar en la página de administración y acceder a la opción que pone «Obtener un modelo de Ollama.com», escribir el deseado y darle al botón de la derecha para descargarlo. En la imagen por ejemplo nos descargamos el modelo llama3.1 de 70B (son cerca de 42Gb, así que deberías tener espacio de sobra).

Una vez descargado ya estamos listos para usarlo, vete a la opción «nuevo Chat», selecciona el modelo en el desplegable superior y chatea con tu nueva AI…

En próximas entregas ya entraremos en más cosas que podemos hacer con nuestra IA local, seguro que no nos deja indiferentes.

De puertas traseras y software libre

Es casi imposible que no hayas oido hablar del backdoor xz, no es que yo pueda darte más información sobre el tema, os dejo un video de alguien que os cuenta el caso completo como si de un episodio de serie negra se tratase:

El caso es que, alguien durante tres años ha ido infiltrándose en un repositorio de un elemento pequeño pero crítico de software libre llamado xz, de tal manera que consiguió, no solo quedarse como mantenedor de ese repositorio sino que fue introduciendo, poco a poco, una puerta trasera que permitía el acceso remoto (todavía hay que ver el payload real lo que llegaba a hacer) y conseguir que ese backdoor se distribuyese en algunas de las más importantes distribuciones.

Por suerte, o mejor dicho, por la misma estructura del software libre, esta versión no pasó de las versiones inestables de las distribuciones y se descubrió el pastel porque una persona notó que algo iba más lento de lo que debía después de la actualización. Esta persona (Andres Freund) no se paró en medir el tiempo de respuesta sino que terminó encontrando la causa subyacente y la puerta trasera que habían metido (aquí el aviso que dió a la comunidad) y, obviamente, la reacción de los mantenedores de la distribución, e incluso del antiguo mantenedor del repositorio fue inmediata y reliminó todas las trazas del código dañino.

Hay varias cosas que podemos destacar, pero yo me quedo con un par de ellas:

  1. La dependencia que tenemos de código que han escrito terceros y que pueden estar bien mantenidos o no (dependiendo del ánimo de esa persona o de sus circunstancias personales)
  2. La potencia del ecosistema open source para descubrir y arreglar este tipo de problemas. Todos los sistemas operativos actuales, desde mac os hasta windows usan componentes externos, no hay ninguno 100% original y tampoco es que se pueda saber qué es lo que usan exactamente. Si hay un backdoor en windows o en macos nos lo tendremos que comer con patatas porque nadie puede mirar lo que hay dentro.

Estoy seguro de que esta forma de actuar, por muy inteligente y paciente que sea, no deja de ser un ataque en toda regla con unas finalidades seguramente malvadas (crear una botnet inmensa, por ejemplo) y no creo que sepamos realmente quien está detrás de ello y, posiblemente, nos de para una docuserie de Netflix un día de estos.

En fin, no ha pasado nada, todo está en orden de nuevo y lo malo es que nos deja un regusto amargo y hace bajar un peldaño la confianza que teníamos en el ecosistema (pero no mucho, oye, que seguimos estando a salvo).